Projective Skip-Connections for Segmentation Along a Subset of Dimensions in Retinal OCT

نویسندگان

چکیده

In medical imaging, there are clinically relevant segmentation tasks where the output mask is a projection to subset of input image dimensions. this work, we propose novel convolutional neural network architecture that can effectively learn produce lower-dimensional than image. The restores encoded representation only in spatial dimensions and keeps unchanged others. newly proposed projective skip-connections allow linking encoder decoder UNet-like structure. We evaluated method on two retinal Optical Coherence Tomography (OCT): geographic atrophy blood vessel segmentation. outperformed current state-of-the-art approaches all OCT datasets used, consisting 3D volumes corresponding 2D en-face masks. fills methodological gap between classification ND

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple Skip Connections and Dilated Convolutions for Semantic Segmentation

We propose a scale-aware semantic segmentation method specifically for small objects. The contributions of this method are 1) to feed the features of a small region by using multiple skip connections, and 2) to extract context from multiple receptive fields by using multiple dilated convolution blocks. The proposed method has achieved high accuracy in the Cityscapes dataset. In comparison with ...

متن کامل

The Importance of Skip Connections in Biomedical Image Segmentation

In this paper, we study the influence of both long and short skip connections on Fully Convolutional Networks (FCN) for biomedical image segmentation. In standard FCNs, only long skip connections are used to skip features from the contracting path to the expanding path in order to recover spatial information lost during downsampling. We extend FCNs by adding short skip connections, that are sim...

متن کامل

Deep Learning based Retinal OCT Segmentation

Objective To evaluate the efficacy of methods that use deep learning (DL) for the automatic fine-grained segmentation of optical coherence tomography (OCT) images of the retina.

متن کامل

Segmentation of retinal OCT images using a random forest classifier

Optical coherence tomography (OCT) has become one of the most common tools for diagnosis of retinal abnormalities. Both retinal morphology and layer thickness can provide important information to aid in the differential diagnosis of these abnormalities. Automatic segmentation methods are essential to providing these thickness measurements since the manual delineation of each layer is cumbersome...

متن کامل

The Edge Detectors Suitable for Retinal OCT Image Segmentation

Retinal layer thickness measurement offers important information for reliable diagnosis of retinal diseases and for the evaluation of disease development and medical treatment responses. This task critically depends on the accurate edge detection of the retinal layers in OCT images. Here, we intended to search for the most suitable edge detectors for the retinal OCT image segmentation task. The...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Lecture Notes in Computer Science

سال: 2021

ISSN: ['1611-3349', '0302-9743']

DOI: https://doi.org/10.1007/978-3-030-87193-2_41